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Abstract. The mean current density through tunnelling bnrriers with rough surfaces is 
considered. Special attention is paid to the current-bias chanrteristic. The roughness is modelled 
by uniformly distributed short-ranged bumps. It is found that roughnw ouses a changc of the 
effective barrier thickness according to the mean height deviation from the ideal surface and 
gives rise to a diffuse current contribution that enhances the current through the barrier A 
generalization of the results using the lo& density of states is given. 

1. Introduction 

During the last decade, great progress in thin-film technology has made it possible to 
produce ultra-thin layers of high quality. For example, AlGaAs layers can be grown that 
show perfectly abrupt interfaces [I]. Nevertheless, the surface roughness of thin films is a 
point still under discussion 12-51 because it strongly influences transport properties [6,7]. 

Recently, a bimodal roughness spectrum has been proposed [SI and experimentally 
investigated [4,9,10]. Following the ideas in [SI, the interface roughness spectrum can be 
described by a long-wave part due to large islands of constant film thickness and a part due 
to microroughness on an atomic scale. 

The present paper addresses the microroughness of a biased tunnel barrier and its 
influence on the current passing through the'banier. The current through rough tunnelling 
barriers has already been the focus of a paper by Houd and Boyer 1111 where large-scale 
roughness between macroscopic contacts was considered. Other related work has been done 
by Knauer and co-workers 1121 and Stoll and Schneider [13] who considered disordered 
tunnel barriers, and by Leo and MacDonald [14], Tan and co-workers 1151 and Johansson 
[16], who treated interface roughness in resonant double-banier structures. The similar 
problem of photon tunnelling through thin layers with uneven surfaces was the focus of 
[171 and [181. 

In the present paper, surface roughness is modelled by uncorrelatedly distributed bumps 
that cover the bamer with a main density N [6]. These can be either concave or convex. 
Their characteristic dimensions are small compared to the de Broglie wavelength of the 
tunnelling particles. The calculations are based on a scattering picture that uses the 
individual scattering amplitude f(") of each bump. However, since we are interested in 
the mean current density that passes through the barrier, the final results obtained here 
contnn averaged quantities such as ( f )  and ( I f l * ) .  Although our method is quite similar to 
that of Leo and MacDonald [14], the results obtained here within the consequent scattering 
picture can be represented very compactly and transparently by taking advantage of the 
optical theorem in simplifying some expressions. Moreover, the method presented can 
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be applied without any changes to small particles adsorbed on the tunnel barrier if their 
characteristic (f) and are known. In principle, the scattering amplitude of each 
individual bump can be obtained exactly. The multiple-scattering effects between them, 
however, are neglected here in order to keep the problem treatable. 

In contrast to calculations on barriers with constant thickness where a one-dimensional 
treatment is often sufficient [19], the present investigation, which includes scattering, must 
be essentially three dimensional. We adopt the Fourier transformation method employed in 
[12]. This allows a transparent and compact formulation of the results. 

In section 2, an analytical expression for the 
tunnelling current through the rough barrier is derived,. Section 3 illuminates the problem 
from a more general point of view, giving a reformulation of the results useful for a discrete 
set of possible scattering states. Conclusions and an outlook are presented in section 4. An 
appendix shows the treatment of a trapezoidal barrier potential. 

The paper is organized as follows. 

2. The tunnelling current 

Our model consists of a tunnel barrier of thickness L that is embedded in two regions with 
zero potential (on the left-hand side, z < 0) and with a bias potential (on the right-hand 
side, z > L),  respectively (see figure 1). The bias is assumed to be small compared to the 
barrier height. The zdependent potential profile is 

h2w 
2m 2m 

z < o  V ( z ) = O  O < z < L :  V ( z ) = -  h2u(z) z > L: V ( z )  = w =-. (1) 

The barrier surface at z = 0 is roughened by uncorrelated bumps with a mean surface 
density N.  Each of them can be vaulted outward as well as inward and is characterized 
by its individual scattering amplitude f'"). Multiple-scattering effects between them are 
neglected. 

"rl 
Figure 1. Energy scheme of the banier model (thick 
line) and possible scattering event of B particle incident 
on the barrier with a (normalized) energy kz. The 
particle is scattered from the initial state with a normal 
momentum component 40.1 into one with qr > q(,,(. 

- - T ~  -~- -- ,. 

O L  z 
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If a primary field &(T) with energy E = (h2/2m)k2 is incident on the barrier, it will be 
scattered at the bumps. The resulting total field is the superposition of ~ o ( T )  and scattered 
waves 

(2) 

where T~ = (a, 0) is the position of the nth bump. G(T, T') is the propagator of the 
system without roughness. It satisfies the differential equation 

'€'(T) = ~ o ( T )  + C ~ " ) ~ O ( T , ) G ( T ,  m) T 2 (R, z) 
n 
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and can be decomposed into one-dimensional components Gp(z,  z') by means of the Fourier 
transformation 

G ( r ,  r') = - /" dzpe'"R-R''G,(z. z') (4) (W2 
where G,(z, z ')  obeys the equation 

For z' < 0, z 2 L,  Gp(z ,  z') can be represented as 

with 4: = kZ - pz and 4; = kz - pz - w. t(q1) is the one-dimensional transmission 
coefficient for a wave elq'L originating from z c 0. If both arguments lie on the left-hand 
side, z ,  z' < 0, G,(z, 2 ' )  reads 

i .  G,(~ z') = -[ewlz-z'l + r(qr)eiqilz+z'I I. (7) 
' 241 

r(ql) is the ID reflection coefficient of the barrier. 
Now we assume a plane wave exp[i(po. R + q o ~ z ) ]  to be incident on the barrier from 

the left under an angle 'po = cos-'(qo.l/k). Our goal is to calculate the current density (j,) 
that passes through the rough barrier, averaged over all bump configurations. In particular, 
we are interested in the dependence of (jz) on the bias w. ( j z )  depends on the bias w only 
via 4,. We insert (Z), (4), (6), (7) into the general formula 

where fi = m = 1 for brevity, and obtain after a lengthy but, in principle, simple calculation 

where the first term is the current density through the ideal barrier, and T IrlZ. Here, we 
have defined the averaged quantities (f) = N-' E, f'"' and (If/') 

In the following, we will restrict ourselves to the simple case of a rectangular barrier 
with u(z) = U although the barrier is biased. The more realistic case where the barrier 
potential is a trapezoid, u(z)  = U + (w /L) z ,  due to a potential difference eU = h2w/2m 
across the barrier, is treated in the appendix, and it is shown there that the rectangular-barrier 
model gives a good approximation for reasonable potential drops [ZO]. Additionally, we 
assume that Lz(u - k2) >> 1, i.e. the tunnel effect is weak, and U >> k2, i.e. the particle 
energy is well below the barrier top. Then we have the following relations [21]: 

N-' En lf("'lz. 
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with K’ = v+p’  - k 2 .  

(f), using the first relation of (IO) and the optical theorem [22] 
Formula (9) requires further analysis. For this purpose, we rewrite the term containing 

Imf = IfI’ImG(r, T)~=o = l f l Z 2 r k 3 / 3 v  (11)  

where equation (7) has been employed for the second equality and the integration over p 
(see equation (4)) has been performed. From equation ( 1 1 )  we find that the term with Imf 
can be neglected in all further formulae since it is always small, of order k2/u ,  according 
to the assumption made above. This is a peculiarity of the present tunnelling problem. 
In discussions on an isolated scatterer [23] this term plays an important role because it 
describes the interference of incident and scattered fields. 

Now equation (9) reads 

First we consider the term proportional to (Ref). From (10) we find that (d/dL)T = - ~ K T ,  
and thus we can intepret the (Ref) term as a correction to the transmittivity T(q0.f) due 
to a change in the effective barrier thickness: 

If the characteristic bump dimensions are small compared to the penetration depth K-’, 

Ref N f can be simply calculated by means of the Born approximation [22] f 1: Ref N 

uhb, where h is the characteristic bump height and b the area on the surface occupied by 
the bump. (On the other hand, if the surface is covered with uncorrelated particles that can 
be treated as hard spheres with diameter U, f N -a holds.) 

If convex and concave bumps occur with the same statistical weight, i.e. (h )  = 0, the 
effective thickness remains unchanged, of course. This first correction term changes neither 
the direction of the current flowing through the barrier nor the dependence of the current 
on the bias w compared to an ideal barrier. As for ideal barriers, the main flux through the 
barrier increases if w c k2 cos’ (00 = q&. 

In contrast, the integral in the term proportional to (If[’) corresponds to diffuse 
scattering of particles in all directions due to surface roughness. Particles incident on 
the barrier in a state po are scattered into other states p .  On the other hand, particles are 
allowed to tunnel if w c k2 -p’. Consequently, a current through the rough barrier is also 
possible in the bias range q& g w < k2 made up of particles diffusely scattered into states 
with p z  c p i .  This leads to a tail in the ( j r )  versus w plot for non-perpendicular incidence, 
i.e. ’pO z 0. This should be observable experimentally. 

If the bias has crossed the onset point of the ideal barrier, i.e. w c q&, the contributions 
due to diffise scattering are outweighed by the main current due to the initial state with PO. 

For the case where convex and concave bumps are present with the same statistical 
weight, roughness always leads to enhanced transmission due to diffuse current 
contributions. This has already been shown to be true for disturbed barriers in 1141, [I61 and 
[ 1 3 ] .  On the other hand, if the bumps are mainly vaulted outward, the total transmissivity 
of the barrier above the onset point w = q& is decreased as long as the correction to Zrr 
which is of first order in (f) outweighs the diffise scattering term depending on (Ifl’). 
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The integral in equation (12) can be solved approximately, taking into account the fact 
that the exponential of T(q1) is nearly constant in the integration range p2  << f i / L .  For 
p2 >> f i / L ,  the integral is cut~off by this exponential. Thus, in the bias range of interest 
here, i.e. around the onset point of the ideal barrier, k2 2 w 2 0, the total mean current 
density finally reads 

We remark without explicit calculation that the same result is obtained if the rough side of 
the barrier is that at z = L. 

In figure 2 is given a plot of (I2) versus w around the onset point q& of the main 
current. The contribution of the diffuse scattering below the onset point can~be easily seen. 

o m 1  

E-W 
E 
- 

Figure 2. Solid line. plot of the mean current density passing through a rough barrier Venus 
the (normalized) difference of particle energy E and bias W .  The particles are incident under 
an angle 9, = x / 3 .  The roughness parameters are (Ref) = 0, i.e. concave and convex bumps 
occur with the same weight. and N(I f 1 2 )  = OS. The ratio k 2 / v  is quai to 0.01, Le. the particle 
energy is much smaller than the barrier potential. The tail due to diffuse scauering as well as the 
sharp onset of the main current are clearly seen. Broken line, barrier with the same parameters 
but without roughness. 

The diffuse current contribution is proportional to the typical quantity N(lfI2) related 
to the scattering picture of the present paper and can be seen as the product of a mean 
surface coverage factor B = Nb and h2bu2. This can be easily translated into the language 
employed by other authors [24] using the product of the surface height profile RMS A and 
correlation length 6, as was shown in [61. 

In order to make contact with a current experimental situation we relate the diffuse 
current density (j&ff) just below the onset of the main current to that for zero bias (j& 
for an AlGaAs barrier. We suppose that (f) = 0 and use typical barrier parameters from 
[Z]. Electrons of energy 12 meV are incident under an angle of ‘po = n/4 on the AlGaAs 
barrier with 120 meV height. The roughness parameters are those presented by Sakaki and 
co-workers [26], i.e. h = 0.6 nm and b = 36 nm2. For the coverage factor we assume that 
B = 0.4. With these data we obtain (j6ff)/( jzem) ~ 0 . 2 .  Thus roughness scattering in such 
a barrier leads to a measurable tail. 
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3. Generalization of equation (12) 

Here, we will generalize the treatment given in the preceding section. The configurational 
average of jz (which gives the mean current passing through the barrier) destroys all 
interferences of the scattered waves: Thus, the diffuse current density is the sum over 
all currents J ,  emerging from the bumps into the r e ~ o n  z > L, multiplied by the mean 
bump density N .  .I$ is simply 

where ImG+(r,, T,J contains only states that carry a current to z > L. Thus 

(2 = T,a(md.l)Re[qo.r.] + I@dZN(lfI2)~mG+, (16) 

1r$o[2 and ImG+ must be taken at the rough side of the barrier. If both sides are rough, the 
corresponding contributions simply add. 

Equation (9) provides a test of the general expression (16). Indeed, if we separate in 
ImG(r, T ) ~ = o  the states eventually giving a current into the region z > L (see (7) and (6)) 
we can identify 

On the other hand, it is obvious that 

I $ o ~ ~  = 11  +r(qo.d2 

The generalized expression (16) tums out to be useful in cases where scattering is possible 
only into a discrete set of states, as for instance in quantum-well structures. 

4. Conclusions 

In this paper, the influence of surface roughness of a tunnel barrier on the current passing 
through has been investigated. The roughness was modelled by uniformly and uncorrelatedly 
distributed bumps. 

The action of the roughness has been shown to be twofold. Firstly, the effective barrier 
width is changed according to the mean bump height and the surface fraction that is occupied 
by the perturbations. Secondly, the sharp rise of the current through an ideal barrier if the 
bias potential crosses the onset point is washed out in the presence of surface roughness. 
This is explained by elastic scattering of particles into states with higher normal component 
of the wave vector. The presence of roughness on the barrier always leads to an enhancement 
of the tunnelling current. 

We have argued that the diffuse current density contributions can be expressed by a 
product of absolute squares of incident field and bump scattering amplitude, and the local 
density of states at the rough banier surface. Seen from this point of view, formula (14) 
tums out to be a special case for a continuum of scattering states. 
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Finally, there is an essential point to mention. The results given here are obtained 
under the assumption of a single plane wave incident on the banier under a well defined 
angle. This corresponds to an experimental situation similar to that of photon tunnelling 
[17,18]. Information about the roughness parameters can be gained by measuring the 
fraction of diffusely scattered particles. On the other hand, in the case of a bulk material, 
a continuum of incidence angles is possible. Therefore the current tail discussed here will 
not be observable. In contrast, in the case of tunnelling from a quantum well where only a 
few lateral modes are occupied, it should be possible to detect the lateral modes as well as 
the tail by tunnelling spectroscopy (TS). Structures that seem to be appropriate have been 
proposed in [27] and [28]. TS experiments on quantum structures have already been carried 
out [29-311. Thus, Ts on quantum structures could provide a tool for the estimation of 
surface roughness. 
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Appendix 

Consider a barrier potential profile 

u(z)  = U + F z  F = w / L .  (AU 

The differential equation (5) with a barrier potential (Al) has in the barrier region 0 Q z < L 
solutions that are called Airy functions [32,22]. They can be expressed as 

(A2) 2 3/2 2 312 
@&) a&Ki/dj< ) @-(z) = b&Zip(yk ) 

where the dimensionless variable < F1’3(z + K 2 / F )  has been defined for the sake of 
brevity. K l p  and I1/3 are the so-called modified Bessel functions. @+(<) correspond to 
the solutions erKz inside a rectangular barrier. 

The @*(z) have to be matched to the oscillatlng solutions outside the barrier by an 
appropriate cholce of the coefficients a and b according to the matching conditions 

As in section 2, w < U is assumed. This is equivalent to the condition e > 1, and thus we 
can use the asymptotic forms of @* 

@+(z )  - t-i/4 exp(iS<3/2). (‘44) 
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Inserting the asymptotic forms (A4) into the matching conditions (A3), we obtain 

i q  + ~ [ 1  t F4/3/4~4] 
r ( d  = . 

141 - K[1 + F4/3/4K4] 
(AS1 

where only the largest correction term is included. (The approximation given here agrees 
with the result obtained by means of the WKB method used in [19].) Thus, under the 
assumptions made above, the saw-tooth barrier shape changes the results obtained for a 
rectangular barrier only slightly. 
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